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Orbital magnetism in ensembles of parabolic potentials
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We study the magnetic susceptibility of an ensemble of noninteracting electrons confined by parabolic
potentials and subjected to a perpendicular magnetic field at finite temperatures. We show that the behavior of
the average susceptibility is qualitatively different from that of billiards. When averaged over the Fermi energy
the susceptibility exhibits a large paramagnetic response only at certain special field values, corresponding to
commensurate classical frequencies, being negligible elsewhere. We derive approximate analytical formulas
for the susceptibility and compare the results with numerical calculati®i€63-651X98)04110-5

PACS numbsg(s): 05.30.Ch, 03.65.Sq, 73.20.Dx, 73.2&

The interest in the magnetic properties of ensembles dfial for each value of the magnetic fie[d0]. The grand-
mesoscopic systems has increased considerably in the lasinonical potential is given by
years[1,2]. The main motivation for the theoretical investi-
gations recently carried out is the experimental results ob- 1
tained by Levyet al.[3] for an ensemble of square billiards V=-— Ef dE p(E)In(1+ef»~B), 1)
in the ballistic regime. It is now understood that, when aver-
aged over a large ensemble of similar systems, the magnetic ) . )
susceptibilityy of regular systems is enhanced with respectVhere p is the density of states3=1/kgT and  is the
to the Landau susceptibility, due to the coherent contribu- chemical potential. In trge semiclassical lipitcan be seépa-
tion of families of periodic orbits. For chaotic systerpds ~ 'atéd into @ mean term” plus oscillatory contributionp
usually small, of the order of, , but bifurcations might play that are usually ‘(’)"”tt%QC in terms of period orbisl]. After
an important role in increasing the susceptibilig]. Also, ~ Substituting p=p~+p™" in Eq(.) (D), thg grand-canonical
for square billiards, the averaged susceptibility is alwaygotential also separates intg™()+V**{u). Following
paramagnetic at low magnetic fields. This behavior seems tgllmo et al. [1] we define a mean chemical (|)ootent;aP
be generic of regular billiardgl]. from N=[dEp(E)f(E—u)=[dEp"(E)f(E—wn") where
The purpose of this Brief Report is to study the magneticf (X) =1/(1+€) is the Fermi-Dirac distribution function.
susceptibility of an ensemble of noninteracting two- Using the thermodynamical relati¢f(N) =V (u) + uN with
dimensional electron gas confined by parabolic quantunt=x(N) obtained from the equations above, it can be
wells at finite temperatures. The interest in such confine@hown[10] that, in the semiclassical limit, the free energy
mesoscopic systems was renewed both by the recent expef@n be written as a sum of three terns=F°+AF!
mental developments in condensed mdt&rand its impor-  +AF?, where F°=V°(1°) + u°N does not depend on the
tance in the theoretical studg] of trapped ion experiments Magnetic fieldB, AF!=V°*{u°) and
[7]. We show that the behavior gf as a function of the
magnetic fieldB and Fermi energy: is very different from 1 2
that of billiards when ensemble averages are considered. The AF?=— " U dEp*{E)f(E-u®)| . )
main reason for the this strong difference resides on the reso- 2p7(p)
nances exhibited by the system as the magnetic field is var-
ied. These resonances are peculiar of harmonic potentials the case of a parabolic confinement, the Hamiltonian
and are due to the degeneracy of the tori on the energy shef)f an electron of charge and effective massn* can be
The magnetic response of a single harmonic oscillator at zergritten directly in terms of action variables §$2] H(l)
temperature in a magnetic field has been considered before Q-1 with Q,=3(&,+&), Q,=3(¢&,—€.) and €.

by Pradoet al.[4] and Nemeth[8]. In this work we derive = (w;* w,)’+e°B?/m*?., The quantum mechanical en-
simple analytic expressions for that are directly amenable ergy levels are therefore given b&klkzzhﬂl(lir 1/2)
of ensemble averages. +%Q,(k,+1/2). To compute the® and p°¢ we follow

In the canonical ensemble the magnetic susceptibility pegerry and Tabof13] and write the semiclassical density of
particle y= — (1/N) 3°F/9B? measures the sensitivity of the states as

Helmholtz free energ¥ to the magnetic field8. For a non-

interacting modeF can be computed exactly if the number

of particlesN and the temperatur& are not too largd9]. p(E)=2>, S(E—H(I=m+1/2), 3
However, for largeN and temperatures of the order of the m

the mean level spacin@n units of Boltzmann constarg),

x can be computed quite accurately by using an auxiliarywherem=(my,m,) and the factor 2 takes care of spin de-
grand-canonical potential where the average number of pageneracy. Using the Poisson sum formula we fifgE)
ticles is kept fixed by properly adjusting the chemical poten-=2E/(%°w,w,) and
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where¢ varies along the energy surface in the,(,) plane

of the action variables. The prime above the summation sym-
bol means that the ternmy(; ,m,) = (0,0) (responsible fop®)

is excluded. Explicity we get,=E/Q,—£Q,/Q andl,
=0, £/Q for 0<¢<EQ/(Q,Q,) with Q=Q3+ Q3. For
generic Hamiltonians the integration ovércan performed
within the stationary phase approximation and gives a semi-
classical expression fgi°* In the present case the integra-  FIG. 1. The first 290 single particle energy levels normalized to

tion can be carried out exactly and results in e=E/(#w,) as a function of the magnetic fieBl The triangles on
top indicate the resonances witli=1 andn=2, .. .,20.

2( _ 1)m1+ mZe(iﬂ—E/thQZ)(m201+ m1Q5)

POSCZZ o (M=) >0 and we see that the main contributions\t6* and AF?
come from theseesonantterms. Defining the function
E
X sin m,Q,—my Q) |. 6 sifC(B
Ty M1 M0y) (6) S8 rg(é)n’ ©

Substituting the above expression f&*¢in the formulas for
AF! andAF? we get

AFt=2"
Z ﬁ2w1w2(72_71) B

sin(y1) (1= m,o0)
yisinh(my, /u®B)

where  C(B)=3(y2— 1) =(mu’fiwi0;) (N0~ me,)
vanishes aB,,,,, we get, after rearranging the trigonometric
Sin(72)(1— 8, o) functions and considering only the tegn=1, the following

2 my0 approximated expressions:
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The double prime in the summations means that only the

integers M;,m,) in the upper half plane, minus the negative

m, axis, are included. We have also defineg,

:ZWMOmi/(ﬁQi). 5
Both expressions foAF! and AF? can be simplified if

one notes that, as the magnetic field is varied, the ratio

o
T

P
Q0,/Q, passes densely through rational numbers, where all 10 . .

the classical orbits of the system are periodic. To those field 0 0o 2 & 10
values there also corresponds a large degeneracy of the er. w (10"eY)

ergy levels. We therefore restrict our attention initially to the 5 5 Magnetic susceptibility as a function ofu® at B=0
neighborhood of these valuesBfonly. LetB=B, be such  5,47—0.3 mK. The inset showg as a function o for a single
that Q;=nQg and Q,=mA, i.e., Q;/Q,=n/m andQq  gystem, without any average, for the same temperature Nand
=Jw,w,/nmis the frequency of the classical periodic or- =500. In both cases the full line represents the numerical exact
bits. At those points the denominator in Eq3) and (8)  result and the dotted line shows the analytical calculatjgn+(y*
vanishes for all f1,,m,) of the form (pn,pm) for all p +x9).
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FIG. 3. Susceptibility averaged ové as a function of the
P y g FIG. 4. Sizeaveraged susceptibilitisee text as a function of

magnetic field for three different temperatures. In all cabkes h i« fiold for th uiff |
=500, SN/N=0.2, the full line represents the exact result, the dot-the magnetic 1€ or three different temperatures. In all cases
=0.1, the full line represents the exact result and the dotted and

ted line shows the resonant approximation, and the dashed Iing hed I h h buti f the full i lculati
shows the full analytic formula, Eq€7) and (8). ashed lines show the contributions of the full analytic calculation

and that ofy? alone, respectively.
where R(B)=(272)/(%BQ,) sinh {27)I(hBQ)] is a

temperature dependent factor that diminishes exponentially u° PS(B)
the susceptibility for largd’s and large )y's. The depen- (X)N=— > R2(B) > (12
dence of the free energy on the magnetic field has been re- 27°Nnm d

duced toS(B) and the magnetic susceptibility can be readil . . .
computedf V)Ve recall tha? the Landatﬁ) suscyeptibility for thyéThere_fore, sincg”S*(B)/dB? is proportional toN and has a
oscillator is given by[4] x, = — (e/m*)242/(60). negative peak aB,, x exhibits a positive peak at each
The expressions just derived describe the behavior of §sonance whose strength goesudnm. _
single system in the thermodynamic limit. In the experiment  In what follows we present numerical calculations per-
with square billiards of Lewyet al. [3], however, only the formed with w;=5.4x10 s™*, ©,=0.9»;, and m*
average properties of an ensemble of systems were mea0.067,, which is the electron effective mass for a GaAs
sured. The individual members of the ensemble, althouglquantum well. Figure 1 shows the first 290 energy levels as a
very similar, present small differences among themselvedunction of the magnetic fiel8. The arrows on top indicate
Besides, the number of particles confined in each of thenthe position of the most relevant resonances. Figure 2 shows
might vary slightly. To account for these fluctuations further y as a function ofu® at B=0 for a single system, without
averages have to be performldd. As in the case of billiards the average. The inset showsas a function o8 for 500
[1] the oscillatory contribution oAF! to y vanishes under particles, corresponding to approximatelyu®=7.5
an average over the Fermi energy, or number of particles, fox 10 ¢ eV. In both case§=0.3 mK, the full line repre-
dispersionséu of the order of2{)y. The contribution of sents the numerical exact result and the dotted line shows the
AF? remains for the parabolic potential as it does in the caseesult derived from Eqg7) and(8). The agreement between
of billiards. The main difference here is that, due to the factexact and analytic results is very good. The approximate for-
that the density of states increases linearly with the energymulas, Eqs(10) and(11) also give very accurate results for
the contribution ofAF? is of the same order ip° than that  y close to the resonances. Figure 3 shéws, , the suscep-
of AF. Also, in terms of particle number, the relative dis- tibility averaged over particle number, as a functiorBofor
persion SN/N necessary to kilAF! falls as 14/N. There- N=500 and dispersio@N/N=0.2 computed directly from
fore, for largeN’s, even very small dispersions will effec- the energy levelsfull line), from the resonant formulél2)
tively wash out AF!. The resulting susceptibility, after (dotted ling, and from the full analytic expression Eq3)
performing the average, is and (8) (dashed ling for three different values of the tem-
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perature. The last two curves also include the contribution o6ince the resonances are washed out by the average, we be-

xL. Once again we found an excellent agreement betweelieve that the introduction of small anharmonicities in the

the exact and approximate calculatignstice that the exact potentials would not affect the results.

and analytical curves involve the separate calculationy of ~ In conclusion, the magnetic response of an ensemble of

for variousN'’s before the average is performed tyvo—dimensipngl elect_ron gases confined by parabolic poten-
We finally consider averages over different confining po_t|§1l§ is qualitatively different from that of an ensemble of

tentials. In order to keep the potentials integrable and not @illiards. The main features of the problem can be under-

introduce too many parameters we consider each member §f°0d With the help of aesonantapproximation for the den-
the ensemble to havey;=xwy, and w,=Xw,o, With a sity of states. For an ensemble of identical quantum wells,

) L i i each holding slightly different number of electrons, the mag-
Gaussian distribution of aroundx=1. This can be viewed netic response is enhanced only at the resonances. When a
as asizeaverage, sincg changes the available area in coor- gispersjon in the size of the oscillators is included, the sharp
dinate space without changing the shape of the potential. Ifesponse at the resonances are smoothed out but the suscep-
what follows we use an extra index O to indicate quantitiesibility at low fields remains oscillatory as a function of the
computed withx=1. Keeping the numbeN of particles Fermi energy, and not necessarily paramagnetic as in the
fixed we see that ,u,o=ﬁ\/NX2w10w20=X,u8 and case of billiards. We emphasize that the nature of our ap-
Qo(B)=xQq. Therefore, the oscillations in Eqél0) and  proximations are different from those of RéL], since here

(11), which depend on the ratia®/ ), are not affected by it is validy for all values ofB, not only in the limit of small

the averaging. However, sinc;(B)=xQ;,(B/x), S(B) fields. The large peaks exhibited by the susceptibility at the
=S,(B/x) and averaging ovex is equivalent to averaging resonances are very peculiar of the oscillator. The average
over B/x. Writing x=1+ 6x, B/x~B—Bdx we see that the density of statep®, on the other hand, generally depend on
average is not effective for small values of the magnetidhe energy for smooth potentials, playing an important role
field. Therefore, the resonant peaks at laBje tend to be  in balancing the relative contributions &fF* and AF? at
smoothed out, enhancing the susceptibility at the nonresdow temperatures. We notice that the oscillator parameters
nant region, close t®=0 for the current value of the pa- and magnetic field can be scaled in order to allow for experi-
rameters. These regions are described approximately by Egentally accessible values. If the frequencies are both mul-
(7) with (m;,m,)=(1,1) and show an oscillatory behavior tiplied by «, the Fermi energy, the susceptibility, and the

with frequenciesy,; and y,. Expanding y;(B/x)~ y;(B) magnetic field are also multiplied by, whereas the density
—Béxy! and imposing yi(B/x) — i(B)| =27 we find that of states scales asdl/ For «=10°, for instance, we would

the oscillations in X die out for eB/m* still be Considering fields of the order of 0.1 T.

~ 1O (02— 0?)/(1Y 5x|) where() is the smallest between
0, and Q,. This is confirmed by the numerical data dis- This work was partially supported by the Brazilian agen-
played in Fig. 4 foréx=0.1 and different temperatures. cies FAPESP, FINEP, and CNPq.
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