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Orbital magnetism in ensembles of parabolic potentials
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~Received 15 June 1998!

We study the magnetic susceptibility of an ensemble of noninteracting electrons confined by parabolic
potentials and subjected to a perpendicular magnetic field at finite temperatures. We show that the behavior of
the average susceptibility is qualitatively different from that of billiards. When averaged over the Fermi energy
the susceptibility exhibits a large paramagnetic response only at certain special field values, corresponding to
commensurate classical frequencies, being negligible elsewhere. We derive approximate analytical formulas
for the susceptibility and compare the results with numerical calculations.@S1063-651X~98!04110-5#

PACS number~s!: 05.30.Ch, 03.65.Sq, 73.20.Dx, 73.23.2b
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The interest in the magnetic properties of ensembles
mesoscopic systems has increased considerably in the
years@1,2#. The main motivation for the theoretical invest
gations recently carried out is the experimental results
tained by Levyet al. @3# for an ensemble of square billiard
in the ballistic regime. It is now understood that, when av
aged over a large ensemble of similar systems, the magn
susceptibilityx of regular systems is enhanced with resp
to the Landau susceptibilityxL due to the coherent contribu
tion of families of periodic orbits. For chaotic systemsx is
usually small, of the order ofxL , but bifurcations might play
an important role in increasing the susceptibility@4#. Also,
for square billiards, the averaged susceptibility is alwa
paramagnetic at low magnetic fields. This behavior seem
be generic of regular billiards@1#.

The purpose of this Brief Report is to study the magne
susceptibility of an ensemble of noninteracting tw
dimensional electron gas confined by parabolic quan
wells at finite temperatures. The interest in such confin
mesoscopic systems was renewed both by the recent ex
mental developments in condensed matter@5# and its impor-
tance in the theoretical study@6# of trapped ion experiment
@7#. We show that the behavior ofx as a function of the
magnetic fieldB and Fermi energym is very different from
that of billiards when ensemble averages are considered.
main reason for the this strong difference resides on the r
nances exhibited by the system as the magnetic field is
ied. These resonances are peculiar of harmonic poten
and are due to the degeneracy of the tori on the energy s
The magnetic response of a single harmonic oscillator at z
temperature in a magnetic field has been considered be
by Pradoet al. @4# and Németh @8#. In this work we derive
simple analytic expressions forx that are directly amenabl
of ensemble averages.

In the canonical ensemble the magnetic susceptibility
particlex52(1/N)]2F/]B2 measures the sensitivity of th
Helmholtz free energyF to the magnetic fieldB. For a non-
interacting modelF can be computed exactly if the numb
of particlesN and the temperatureT are not too large@9#.
However, for largeN and temperatures of the order of th
the mean level spacing~in units of Boltzmann constantkB),
x can be computed quite accurately by using an auxili
grand-canonical potential where the average number of
ticles is kept fixed by properly adjusting the chemical pote
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tial for each value of the magnetic field@10#. The grand-
canonical potential is given by

V52
1

bE dE r~E!ln~11eb~m2E!!, ~1!

where r is the density of states,b51/kBT and m is the
chemical potential. In the semiclassical limitr can be sepa-
rated into a mean termr0 plus oscillatory contributionsrosc

that are usually written in terms of period orbits@11#. After
substituting r5r01rosc in Eq. ~1!, the grand-canonica
potential also separates intoV0(m)1Vosc(m). Following
Ullmo et al. @1# we define a mean chemical potentialm0

from N5*dEr(E) f (E2m)5*dEr0(E) f (E2m0) where
f (x)51/(11ebx) is the Fermi-Dirac distribution function
Using the thermodynamical relationF(N)5V(m)1mN with
m5m(N) obtained from the equations above, it can
shown @10# that, in the semiclassical limit, the free energ
can be written as a sum of three terms,F5F01DF1

1DF2, whereF05V0(m0)1m0N does not depend on th
magnetic fieldB, DF15Vosc(m0) and

DF25
1

2r0~m0!
F E dErosc~E! f ~E2m0!G2

. ~2!

In the case of a parabolic confinement, the Hamilton
of an electron of chargee and effective massm* can be
written directly in terms of action variables as@12# H(I )
5V•I with V15 1

2 (j11j2), V25 1
2 (j12j2) and j6

5A(v16v2)21e2B2/m* 2. The quantum mechanical en
ergy levels are therefore given byEk1k2

5\V1(k111/2)

1\V2(k211/2). To compute ther0 and rosc we follow
Berry and Tabor@13# and write the semiclassical density o
states as

r~E!52(
m

d„E2H~ I5m11/2!…, ~3!

wherem5(m1 ,m2) and the factor 2 takes care of spin d
generacy. Using the Poisson sum formula we findr0(E)
52E/(\2v1v2) and
5146 © 1998 The American Physical Society
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rosc5
2

\2( 8
m

e2 ip~m11m2!rm , ~4!

with

rm5E dj
e2p im•I ~j!/\

uv„I ~j!…u
, ~5!

wherej varies along the energy surface in the (I 1 ,I 2) plane
of the action variables. The prime above the summation s
bol means that the term (m1 ,m2)5(0,0) ~responsible forr0)
is excluded. Explicitly we getI 15E/V12jV2 /V and I 2

5V1j/V for 0<j<EV/(V1V2) with V[AV1
21V2

2. For
generic Hamiltonians the integration overj can performed
within the stationary phase approximation and gives a se
classical expression forrosc. In the present case the integr
tion can be carried out exactly and results in

rosc5( 8
m

2~21!m11m2e( ipE/\V1V2)~m2V11m1V2)

p\~m2V12m1V2!

3sinF pE

\v1v2
~m2V12m1V2!G . ~6!

Substituting the above expression forrosc in the formulas for
DF1 andDF2 we get

DF15( 9
m

~21!m11m2

\2v1v2~g22g1!

4pm02

b F sin~g2!~12dm20!

g2sinh~pg2 /m0b!

2
sin~g1!~12dm10!

g1sinh~pg1 /m0b!
G ~7!

and

DF25
1

2r0H ( 9
m

~21!m11m2

\2v1v2~g22g1!

4pm0

b

3F cos~g2!~12dm20!

sinh~pg2 /m0b!
2

cos~g1!~12dm10!

sinh~pg1 /m0b!
G J 2

.

~8!

The double prime in the summations means that only
integers (m1 ,m2) in the upper half plane, minus the negati
m1 axis, are included. We have also definedg i
52pm0mi /(\V i).

Both expressions forDF1 and DF2 can be simplified if
one notes that, as the magnetic field is varied, the r
V1 /V2 passes densely through rational numbers, where
the classical orbits of the system are periodic. To those fi
values there also corresponds a large degeneracy of the
ergy levels. We therefore restrict our attention initially to t
neighborhood of these values ofB only. LetB5Bnm be such
that V15nV0 and V25mV0 , i.e., V1 /V25n/m and V0

5Av1v2 /nm is the frequency of the classical periodic o
bits. At those points the denominator in Eqs.~7! and ~8!
vanishes for all (m1 ,m2) of the form (pn,pm) for all p
-

i-

e
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.0 and we see that the main contributions toDF1 andDF2

come from theseresonantterms. Defining the function

S~B!5
sin@C~B!#

C~B!
, ~9!

where C(B)5 1
2 (g22g1)5(pm0/\v1v2)(nV22mV1)

vanishes atBnm , we get, after rearranging the trigonometr
functions and considering only the termp51, the following
approximated expressions:

DF15
~21!n1mm0R~b!

p2nm
cosS 2pm0

\V0
DS~B! ~10!

and

DF25
m0R2~b!

p2nm
sin2S 2pm0

\V0
DS2~B!, ~11!

FIG. 1. The first 290 single particle energy levels normalized
e5E/(\v1) as a function of the magnetic fieldB. The triangles on
top indicate the resonances withm51 andn52, . . .,20.

FIG. 2. Magnetic susceptibilityx as a function ofm0 at B50
andT50.3 mK. The inset showsx as a function ofB for a single
system, without any average, for the same temperature anN
5500. In both cases the full line represents the numerical ex
result and the dotted line shows the analytical calculation (xL1x1

1x2).
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where R(b)5(2p2)/(\bV0) sinh21@(2p2)/(\bV0)# is a
temperature dependent factor that diminishes exponent
the susceptibility for largeT’s and large V0’s. The depen-
dence of the free energy on the magnetic field has been
duced toS(B) and the magnetic susceptibility can be read
computed. We recall that the Landau susceptibility for
oscillator is given by@4# xL52(e/m* )2\2/(6m0).

The expressions just derived describe the behavior o
single system in the thermodynamic limit. In the experime
with square billiards of Levyet al. @3#, however, only the
average properties of an ensemble of systems were m
sured. The individual members of the ensemble, altho
very similar, present small differences among themselv
Besides, the number of particles confined in each of th
might vary slightly. To account for these fluctuations furth
averages have to be performed@1#. As in the case of billiards
@1# the oscillatory contribution ofDF1 to x vanishes under
an average over the Fermi energy, or number of particles
dispersionsdm of the order of\V0 . The contribution of
DF2 remains for the parabolic potential as it does in the c
of billiards. The main difference here is that, due to the f
that the density of states increases linearly with the ene
the contribution ofDF2 is of the same order inm0 than that
of DF1. Also, in terms of particle number, the relative di
persiondN/N necessary to killDF1 falls as 1/AN. There-
fore, for largeN’s, even very small dispersions will effec
tively wash out DF1. The resulting susceptibility, afte
performing the average, is

FIG. 3. Susceptibility averaged overN as a function of the
magnetic field for three different temperatures. In all casesN
5500,dN/N50.2, the full line represents the exact result, the d
ted line shows the resonant approximation, and the dashed
shows the full analytic formula, Eqs.~7! and ~8!.
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^x&N52
m0

2p2Nnm
R2~b!

]2S2~B!

]B2
. ~12!

Therefore, since]2S2(B)/]B2 is proportional toN and has a
negative peak atBnm , x exhibits a positive peak at eac
resonance whose strength goes asm0/nm.

In what follows we present numerical calculations pe
formed with v155.43108 s21, v250.9v1 , and m*
50.067me , which is the electron effective mass for a GaA
quantum well. Figure 1 shows the first 290 energy levels a
function of the magnetic fieldB. The arrows on top indicate
the position of the most relevant resonances. Figure 2 sh
x as a function ofm0 at B50 for a single system, withou
the average. The inset showsx as a function ofB for 500
particles, corresponding to approximatelym057.5
31026 eV. In both casesT50.3 mK, the full line repre-
sents the numerical exact result and the dotted line shows
result derived from Eqs.~7! and~8!. The agreement betwee
exact and analytic results is very good. The approximate
mulas, Eqs.~10! and~11! also give very accurate results fo
x close to the resonances. Figure 3 shows^x&N , the suscep-
tibility averaged over particle number, as a function ofB for
N5500 and dispersiondN/N50.2 computed directly from
the energy levels~full line!, from the resonant formula~12!
~dotted line!, and from the full analytic expression Eqs.~7!
and ~8! ~dashed line! for three different values of the tem

-
ne

FIG. 4. Sizeaveraged susceptibility~see text! as a function of
the magnetic field for three different temperatures. In all casesdx
50.1, the full line represents the exact result and the dotted
dashed lines show the contributions of the full analytic calculat
and that ofx2 alone, respectively.
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perature. The last two curves also include the contribution
xL . Once again we found an excellent agreement betw
the exact and approximate calculations~notice that the exac
and analytical curves involve the separate calculation ox
for variousN’s before the average is performed!.

We finally consider averages over different confining p
tentials. In order to keep the potentials integrable and no
introduce too many parameters we consider each memb
the ensemble to havev15xv10 and v25xv20, with a
Gaussian distribution ofx aroundx̄51. This can be viewed
as asizeaverage, sincex changes the available area in coo
dinate space without changing the shape of the potentia
what follows we use an extra index 0 to indicate quantit
computed withx51. Keeping the numberN of particles
fixed we see that m05\ANx2v10v205xm0

0 and
V0(B)5xV00. Therefore, the oscillations in Eqs.~10! and
~11!, which depend on the ratiom0/V0 , are not affected by
the averaging. However, sinceV i(B)5xV i0(B/x), S(B)
5S0(B/x) and averaging overx is equivalent to averaging
overB/x. Writing x511dx, B/x;B2Bdx we see that the
average is not effective for small values of the magne
field. Therefore, the resonant peaks at largeB’s tend to be
smoothed out, enhancing the susceptibility at the nonre
nant region, close toB50 for the current value of the pa
rameters. These regions are described approximately by
~7! with (m1 ,m2)5(1,1) and show an oscillatory behavio
with frequenciesg1 and g2 . Expandingg i(B/x);g i(B)
2Bdxg i8 and imposingug i(B/x)2g i(B)u52p we find that
the oscillations in x die out for eB/m*

;A\V̄(v1
22v2

2)/(m0
0udxu) whereV̄ is the smallest betwee

V1 and V2 . This is confirmed by the numerical data di
played in Fig. 4 fordx50.1 and different temperature
R.
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Since the resonances are washed out by the average, w
lieve that the introduction of small anharmonicities in t
potentials would not affect the results.

In conclusion, the magnetic response of an ensemble
two-dimensional electron gases confined by parabolic po
tials is qualitatively different from that of an ensemble
billiards. The main features of the problem can be und
stood with the help of aresonantapproximation for the den-
sity of states. For an ensemble of identical quantum we
each holding slightly different number of electrons, the ma
netic response is enhanced only at the resonances. Wh
dispersion in the size of the oscillators is included, the sh
response at the resonances are smoothed out but the su
tibility at low fields remains oscillatory as a function of th
Fermi energy, and not necessarily paramagnetic as in
case of billiards. We emphasize that the nature of our
proximations are different from those of Ref.@1#, since here
it is validy for all values ofB, not only in the limit of small
fields. The large peaks exhibited by the susceptibility at
resonances are very peculiar of the oscillator. The aver
density of statesr0, on the other hand, generally depend
the energy for smooth potentials, playing an important r
in balancing the relative contributions ofDF1 and DF2 at
low temperatures. We notice that the oscillator parame
and magnetic field can be scaled in order to allow for exp
mentally accessible values. If the frequencies are both m
tiplied by a, the Fermi energy, the susceptibility, and th
magnetic field are also multiplied bya, whereas the density
of states scales as 1/a. For a5103, for instance, we would
still be considering fields of the order of 0.1 T.
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